PERFORACION PETROLERA

PERFORACION PETROLERA

martes, 7 de junio de 2011

EL ELEMENTO HUMANO

Para llevar adelante las tareas de perforación, terminación y reparación de pozos es necesario un conjunto de personas con diferentes grados de especialización: ingenieros, geólogos, técnicos, obreros especializados y obreros; tienen responsabilidades directas como programación, supervisión, operación y mantenimiento, e indirectas, tales como las de las compañías proveedoras de servicios técnicos, productos químicos y fluidos de perforación, unidades de mezcla y bombeo de cemento u otros servicios de bombeo, unidades para correr registros eléctricos, trépanos y proveedores de servicios auxiliares como transporte de equipo, materiales, cargas líquidas, personal, etc.
El personal directo e indirecto involucrado en la perforación de un pozo, cuando se trata de perforación en tierra en pozos de desarrollo, asciende a una cantidad entre noventa y cien personas; en la medida que aumente la complejidad del trabajo, como, por ejemplo, en los pozos exploratorios profundos, pozos costa afuera, la cantidad de personal requerido puede llegar a duplicarse.
Un equipo perforador, de terminación o de reparación, opera las 24 horas del días, todos los días del año, con personal que trabaja en turnos rotativos de 8 horas.

TAREAS DE TERMINACION DE POZO

Una vez finalizadas las tareas de perforación y desmontado el equipo, se procede a la terminación y reequipamiento del pozo que consiste en una serie de tareas que se llevan a cabo mediante el empleo de una unidad especial que permite el ensayo y posterior puesta en producción del mismo.
Dicha unidad consiste en un equipo de componentes similares al de perforación pero normalmente de menor potencia y capacidad ya que trabaja, en principio, dentro del pozo ya entubado, y por consiguiente, con menores diámetros y volúmenes que los utilizados durante la perforación, y por consiguiente, menor riesgo. El agregado de un mecanismo de pistones le permite realizar maniobras que consisten en la extracción artificial del fluido que contiene o produce el pozo por medio de un pistón con copas que sube y baja por el interior de la tubería de producción (tubing), conectado al extremo de un cable que se desenrolla y enrolla en longitudes previstas, según la profundidad, sobre un carretel movido mecánicamente. Mediante esta operación se pueden determinar el caudal y el tipo de fluido que la capa pueda llegar a producir.

Puede observarse que la operación de terminación implica una sucesión de tareas más o menos complejas según sean las características del yacimiento (profundidad, presión, temperatura, complejidad geológica, etc.) Y requerimientos propios de la ingeniería de producción. De la calidad de los procedimientos para satisfacer estos requerimientos dependerá el comportamiento futuro del pozo para producir el máximo potencial establecido por la ingeniería de reservorios.
4. Desarrollo de las tareas de terminación.
Una vez montado el equipo de terminación, se procede en primer lugar a la limpieza del pozo y al acondicionamiento del fluido de terminación, para luego, mediante los llamados "perfiles a pozo entubado", generalmente radiactivos y acústicos, precisar la posición de los estratos productivos, los que fueron ya identificados por los "perfiles a pozo abierto", como así también la posición de las cuplas de la cañería de entubación y por otra parte la continuidad y adherencia del cemento, tanto a la cañería como a la formación.
Habiéndose determinado los intervalos de interés, correlacionando los perfiles a pozo abierto y entubado, y comprobando la calidad de la cementación, es necesario poner en contacto cada estrato seleccionado con el interior del pozo mediante el "punzamiento" o perforación del casing y del cemento. Esto se realiza mediante cañones con "cargas moldeadas" unidas por un cordón detonante activado desde la superficie mediante un cable especial.
Cada uno de los estratos punzados es ensayado para determinar los volúmenes de fluido que aporta, así como la composición y calidad de los mismos (petróleo, gas, porcentaje de agua). Esto se realiza mediante "pistoneo" por el interior del tubing o "cañería de producción". Se determina así si la presión de la capa o estrato es suficiente para lograr el flujo hacia la superficie en forma natural o si deben instalarse sistemas artificiales de extracción.
Puede suceder que durante los ensayos se verifique que existen capas sin suficiente aislamiento entre sí por fallas en la cementación primaria; en estos casos se realizan cementaciones complementarias, aislando mediante empaquetaduras (packers) el tramo correspondiente al pozo.

Cuando la diferencia de propiedades de las distintas capas así lo justifica, se puede recurrir al tipo de terminación "múltiple", que cuenta con dos columnas de tubing para producir dos intervalos diferentes, quedando también la alternativa de producir por el "espacio anular" entre el casing y los dos tubing un tercer intervalo. También es de norma, aunque muy poco frecuente, la producción triple mediante tres cañerías de producción.
Para el caso de terminación múltiple con dos o tres cañerías, el equipamiento debe incluir no solamente empaquetadores especiales, sino también cabezales de boca de pozo (en la superficie) de diseño particular, los que permiten el pasaje múltiple de cañerías. Por otra parte, el equipo de intervención del pozo o workover debe contar con herramientas especiales para maniobrar con múltiples cañerías a la vez, por lo que estas maniobras de intervención son mucho más riesgosas y delicadas y se requiere una más cuidadosa programación.
Nuevas técnicas  en búsqueda de mejor productividad, tales como las descriptas para perforar pozos direccionales, han desarrollado equipos y materiales que permiten realizar la terminación y puesta en producción de pozos multilaterales con el acceso a varias capas de un mismo pozo o el acceso a una capa remota mediante un pozo extendido horizontalmente.
En caso de baja productividad de la formación, ya sea por la propia naturaleza de la misma o porque ha sido dañada por los fluidos de perforación o por la cementación, o incluso por el fluido de terminación, la formación productiva debe ser estimulada. Los procedimientos más utilizados son: la acidificación y la fracturación hidráulica.
La acidificación consiste en la inyección a presión de soluciones ácidas que penetran en la formación a través de los punzados, disolviendo los elementos sólidos que perturban el flujo de los fluidos.

La fracturación hidráulica consiste en inducir la fracturación de la formación mediante el bombeo a gran caudal y presión de un fluido que penetra profundamente en la formación, provocando su ruptura y rellenando simultáneamente la fractura producida con un sólido que actúa como agente de sostén. El agente generalmente utilizado es arena de alta calidad y granulometría cuidadosamente seleccionada que, por efecto de un mejoramiento artificial de la permeabilidad, facilitará el flujo desde la formación hacia el pozo a través de la fractura producida.

POZO AGARUAGUE XP (cuenca noroeste)

La necesidad de bajar costos en zonas de pozos de baja productividad llevó a utilizar en forma creciente técnicas y/o materiales que redujeron tiempos de manejo y costos de equipamiento. La búsqueda de minimizar los costos de equipamiento llevó a condicionar la geometría de los pozos a la producción esperada, a perforar pozos de poco diámetro denominados slim-holes. Estos pozos de diámetro reducido son terminados generalmente bajo el sistema tubing-less, que consiste en entubar el pozo abierto con tubería de producción (tubing), y luego cementarlo aplicando el mismo procedimiento que para un revestidor convencional.
Mediante la utilización de slim-holes los operadores han podido reducir los costos de perforación de los pozos entre un 40% y un 70%, reduciendo a su vez, costos y preocupaciones ambientales. La experiencia indica que la perforación de slim-holes no reduce usualmente la producción. Los slim-holes fueron utilizados inicialmente en ee.uu. En los años ’60; sobre 1.300 pozos que han sido perforados con una profundidad entre 300 y 1.000 metros en kansas, texas y canadá usando slim-holes de 21/2 a 27/8 pulgadas en casing, los operadores han tenido reducciones entre 40 y 50% en costos de tubería y de un 17% en gastos generales.
Hay varios ejemplos documentados de posteriores programas de perforación de slim-holes: en indonesia, durante el período 1983-1986, se lograron reducir los costos de perforación entre un 65 y 73%; por otra parte, en tailandia, mediante la perforación de slim-holes en su golfo de tailandia durante 1999, se registraron reducciones en los costos de hasta el 40%, pudiéndose comprobar además, que la productividad de los slim-holes fue mayor a la lograda con los pozos convencionales.

El coiled-tubing y la snubbing unit son un material y una herramienta de trabajo de uso cada vez más frecuente: aunque se desarrollaron hace poco más de dos décadas, las nuevas técnicas de perforación, terminación e intervención de pozos necesitan utilizarlos cada vez más. El coiled-tubing, como su nombre lo indica, consiste en un tubo metálico continuo construido en una aleación especial que permite que se lo trate como a un tubo de pvc (cloruro de vinilo polimerizado), pero que posee las mismas características físicas de una tubería convencional de similar diámetro, con la siguiente ventaja: no es necesario manipularlo, ni estibarlo tramo por tramo para bajarlo o retirarlo del pozo, ya que se lo desenrolla o enrolla en un carretel accionado mecánicamente como si fuera una manguera. Esta última característica permite un mejor y más rápido manejo y almacenaje; por ello este tubo tiene múltiples aplicaciones tanto en la perforación de pozos dirigidos como en la terminación y reparación de los mismos.

Unidad de coiled tubing


Desde su aplicación inicial en los años ’60, el uso de coiled tubing se ha incrementado el punto que, en la actualidad, hay 750 unidades diseminados en todo el mundo, donde el 50% de ellos está siendo empleado en norteamérica.
La perforación con coiled tubing se ha incrementado notablemente en los años ’90; a lo largo de 1999, alrededor de 1.200 pozos fueron perforados utilizando este material.
Las unidades de coiled tubing han sido empleadas inicialmente en alaska, omán, canadá, mar del norte y venezuela pero la perforación de pozos usando este material va en aumento en la medida que avanza la tecnología.
La snubbing unit es una máquina hidráulica que, reemplazando o superpuesta a una convencional, permite efectuar trabajos bajo presión, o sea sin necesidad de circular y/o ahogar al pozo para controlarlo. Esta condición de trabajo, que además de reducir tiempo de operación y costos ayuda a conservar intactas las cualidades de la capa a intervenir, consiste en la extracción o corrida de tubería mediante un sistema de gatos hidráulicos que mueven alternativamente dos mesas de trabajo en las que están ubicados juegos de cuñas accionados de manera hidráulica o neumática, que retienen o soportan la columna de tubos según sea necesario. Este sistema mecánico de manejo de tubería está complementado con un arreglo de cuatro válvulas de control de pozos, también accionadas de manera hidráulica, que funcionan alternativamente con la ayuda de un compensador de presiones, lo que posibilita la extracción o bajada de la tubería bajo presión.

Snubbing unit
El empleo conjunto de estas dos herramientas permite realizar tareas especiales de perforación.

PERFORACION MULTILATERAL

PLATAFORMA DE UN POZO VERTICAL DE PERFORACION
La utilización de esta técnica es definir un pozo multilateral como aquel que a partir de una misma boca de pozo se accede con dos o más ramas, a uno o varios horizontes productivos.
Hasta la fecha no se ha encontrado una manera de clasificar al tipo de pozo multilateral ya que la forma y variedad está solo limitada a nuestra imaginación y a las características de nuestros reservorios. Así podemos tener:
  • Vertical y horizontal al mismo reservorio.
  • Vertical y horizontal a distintos reservorios.
  • Dos o más dirigidos al mismo o distinto horizonte productivo.
  • Horizontal con dos o más ramas.
  • Vertical y varios horizontales a distintos reservorios.
  • La estructura final de un pozo multilateral será función del yacimiento y de los recursos tecnológicos disponibles
Ventajas técnico-económicas
Los primeros pozos múltiples fueron perforados en u.r.s.s. en la década del '50. En 1995, a raíz de la proliferación de los pozos y del estancamiento del precio del crudo, las empresas petroleras se vieron en la necesidad de extraer más petróleo por pozo. En este sentido los pozos horizontales pueden producir de 3 a 5 veces más que los pozos verticales en el mismo área –en casos especiales pueden llegar, como máximo, a producir hasta 20 veces más que los pozos verticales-.
Es ahí donde se produce el auge de esta nueva tecnología. Por caso en ee.uu. Desde 1986 hasta 1989 se perforaron sólo 7 pozos mientras que en 1990 se perforaron aproximadamente 85 pozos; en la actualidad, un equipo de quince es para perforación de pozos horizontales, habiendo llegado, en los años 1994 y 1998, a representar uno de diez.
En general, los pozos horizontales tienen un costo de 1,2 a 2,5 veces más que los pozos verticales en el mismo área; por ello, en muchas zonas se recurre a la reterminación de pozos verticales como pozos horizontales puesto que ello implica una reducción del costo del 12 hasta el 56 % por metro, si lo comparamos con un nuevo pozo horizontal.
Entre las ventajas de esta nueva técnica, podemos agregar que en ee.uu. La utilización de pozos horizontales han incrementado las reservas comprobadas.
Los pozos ramificados son útiles por las siguientes razones:
Son muy rentables para la producción de horizontes múltiples delgados, ya que los recintos hacen las veces de fracturas mecánicas extensas.
En yacimientos donde hay un solo horizonte productor de gran espesor y con gran anisotropía vertical.
En yacimientos donde el gradiente de fractura vertical es mayor que el horizontal y la fractura se genera horizontalmente.
En pozos offshore donde el traslado de una plataforma es muy significativo en el costo total del pozo.
En yacimientos marginales donde es imperativo reducir los costos de producción y workover.
Con el advenimiento de la cultura por el cuidado del medio ambiente, este tipo de pozos reducen considerablemente el impacto ambiental (menos locaciones, menos aparatos de bombeo, menor ruido, menor cantidad de líneas de transporte, menos caminos, etc.
También se reducen costos de horas de equipo, cañerías, instrumental, supervisión, etc.
Grados de complejidad
generalmente las empresas productoras de petróleo requieren 3 condiciones ideales de este tipo de tecnologías:
1) conectividad del recinto principal con cada uno de los ramales
2) posibilidad de reingresar a los ramales en forma selectiva
3) sello hidráulico entre el pozo madre y los ramales en la medida en que alguna de estas condiciones no sea indispensable, el proyecto decrece en complejidad y costo. Es así que nacen los distintos grados de complejidad para los ml, a los que podemos dividir en 5 niveles:
  • Pozo principal y laterales abiertos
  • Pozo principal entubado y laterales abiertos
  • Pozo principal entubado y cementado
  • Laterales entubados pero no cementados
  • Pozo principal y laterales entubados con sello hidráulico en las uniones a través de cementación.
Integridad de presión en la unión llevada a cabo:
  • Por la terminación
  • Por el casing
Herramientas especiales
Cuando se realizan este tipo de pozos existen herramientas cuyo uso es casi una constante, y ellas son:
· cuñas desviadoras
pueden ser permanentes o recuperables y se las utiliza para desviar los pozos hacia el objetivo previsto fijándolas de la cañería madre. Existen también cuñas para pozo abierto, aunque estas no son recuperables.
· packers inflables
generalmente se utilizan para colgar cañerías en pozo abierto y/o aislar alguna zona.


Fig. 4-en febrero de 1999, desplazamiento horizontal de 10.585 m., Con una longitud
Total de perforada de 11.184 m., Récord mundial de longitud perforada en su momento.